Escaping Saddle Points in Constrained Optimization
Aryan Mokhtari, Asuman Ozdaglar, and Ali Jadbabaie
llDSS

Laboratory for Information and Decision Systems (LIDS), Massachusetts Institute of Technology (MIT)
MIT INSTITUTE FOR DATA,
SYSTEMS, AND SOCIETY

Introduction

- Recent revival of interest in nonconvex optimization \Rightarrow Practical success and advances in computational tools
- Consider the following general optimization program

$$
\min _{x \in \mathcal{C}} f(x)
$$

- $\mathcal{C} \subseteq \mathbb{R}^{d}$ is a convex compact closed set \Rightarrow This problem is hard

Convex Optimization: Optimality Condition

Before jumping to nonconvex optimization \Rightarrow Let's recap the convex case

- In the convex setting (f is convex)
\Rightarrow First-order optimality condition implies global optimality \Rightarrow Finding an approximate first-order stationary point is suff
\{ Unconstrained: Find x^{*} s.t. $\left\|\nabla f\left(x^{*}\right)\right\| \leq \varepsilon$
Constrained: Find x^{*} s.t. $\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \geq-\varepsilon$ for all $x \in \mathcal{C}$

Nonconvex Optimization

- 1st-order optimality is not enough \Rightarrow Saddle points exist!
- Check higher order derivatives \Rightarrow To escape from saddle points \Rightarrow Search for a second-order stationary point (SOSP)
- Does convergence to an SOSP lead to global optimality? No!
- But, if all saddles are escapable (strict saddles) \Rightarrow SOSP \Rightarrow local minimum!
- In several cases, all saddle points are escapable and all local minima are global
\Rightarrow Eigenvector problem [Absil et al., '10]
\Rightarrow Phase retrieval [Sun et al., '16]
\Rightarrow Dictionary learning [Sun et al., '17]

Unconstrained Optimization

- Consider the unconstrained nonconvex setting $\left(\mathcal{C}=\mathbb{R}^{d}\right)$
- x^{*} is an approximate (ε, γ)-second-order stationary point if
- Various attempts to design algorithms converging to an SOSP
- Perturbing iterates by injecting noise

$$
\Rightarrow \text { [Ge et al., '155], [Jin et al., '17a,b], [Daneshmand et al., '18] }
$$

- Using the eigenvector of the smallest eigenvalue of the Hessian
\Rightarrow [Carmon et al., '16], [Allen-Zhu, '17], [Xu \& Yang, '17], [Royer \& Wright, '17], [Agarwal et al., '17], [Reddi et al., '18]
- Overall cost to find an (ε, γ)-SOSP \Rightarrow Polynomial in ε^{-1} and
- However, not applicable to the convex constrained setting!
- In the constrained case, can we find an SOSP in poly-time?

Constrained optimization: Second-order stationary point

- How should we define an SOSP for the constrained setting? - $x^{*} \in \mathcal{C}$ is an approximate (ε, γ)-second-order order stationary point if

$$
\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \geq-\varepsilon \quad \text { for all } x \in \mathcal{C}
$$

$\left(x-x^{*}\right)^{T} \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right) \geq-\gamma$ for all $x \in \mathcal{C}$ s.t. $\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right)=0$

- Second condition should be satisfied only on the subspace that function can be increasing
- Setting $\varepsilon=\gamma=0$ gives the necessary conditions for a local min
- We propose a framework that finds an (ε, γ)-SOSP in poly-time \Rightarrow If optimizing a quadratic loss over \mathcal{C} up to a constant factor is tractable

Proposed algorithm to find an (ε, γ)-SOSP

- Follow a first-order update to reach an ε-FOSP
\Rightarrow The function value decreases at a rate of $\mathcal{O}\left(\epsilon^{-2}\right)$
- Escape from saddle points by solving a QP which depends abjective function curvature information

$$
\Rightarrow \text { The function value decreases at a rate of } \mathcal{O}\left(\gamma^{-3}\right)
$$

- Once we escape from a saddle point we won't revisit it again \Rightarrow The function value decreases after escaping from saddl \Rightarrow It is guaranteed that the function value never increases

Stage I: First-order update (Finding a critical point)

- Goal: Find x_{t} s.t. $\Rightarrow \nabla f\left(x_{t}\right)^{\top}\left(x-x_{t}\right) \geq-\varepsilon$ for all $x \in \mathcal{C}$
- Follow Frank-Wolfe until reaching an ε-FOSP

$$
x_{t+1}=(1-\eta) x_{t}+\eta v_{t}, \quad \text { where } \quad v_{t}=\underset{v \in \mathcal{C}}{ } \operatorname{argmin}\left\{\nabla f\left(x_{t}\right)^{\top} v\right\}
$$

- Follow Projected Gradient Descent until reaching an ε-FOSP

$$
x_{t+1}=\pi_{c}\left\{x_{t}-\eta \nabla f\left(x_{t}\right)\right\}
$$

$$
\pi_{c}(.) \text { is the Euclidean projection onto the convex set } C
$$

- The function value decreases at least by a factor of $\mathcal{O}\left(\epsilon^{-2}\right)$

Stage II: Second-order update (Escaping from saddle points)

- Find u_{t} a ρ-approximate solution of the quadratic program

$$
\begin{aligned}
& \text { Minimize } q(u):=\left(u-x_{t}\right)^{\top} \nabla^{2} f\left(x_{t}\right)\left(u-x_{t}\right) \\
& \text { subject to } u \in \mathcal{C}, \quad \nabla f\left(x_{t}\right)^{\left(u-x_{t}\right)}=0
\end{aligned}
$$

- $q\left(u^{*}\right) \leq q\left(u_{t}\right) \leq p q\left(u^{*}\right)$ for some $\rho \in(0,1$
$\left\{\begin{array}{l}\text { If } \quad q\left(u_{t}\right)<-\rho \gamma \Rightarrow \text { Update } x_{t+1}=(1-\sigma) x_{t}+\sigma u_{t} \\ \text { If }\end{array}\right.$ $\left\{\right.$ If $q\left(u_{t}\right) \geq-\rho \gamma \Rightarrow q\left(u^{*}\right) \geq-\gamma \Rightarrow x_{t}$ is an (ε, γ)-SOSP
- Some classes of convex constraints satisfy this property \Rightarrow Quadratic constraints under some conditions

Theoretical Results

Theorem. If we set the stepsizes to $\eta=\mathcal{O}(\varepsilon)$ and σ $\mathcal{O}(\rho \gamma)$, the proposed algorithm finds an ($\varepsilon, \gamma)$-SOSP after at most $\mathcal{O}\left(\max \left\{\varepsilon^{-2}, \rho^{-3} \gamma^{-3}\right\}\right)$ iterations.
-When can we solve the quadratic subproblem approximately? Proposition If \mathcal{C} is defined by a quadratic constraint, then the alg. finds an $(\varepsilon, \gamma)-\operatorname{SOSP}$ after $\mathcal{O}\left(\max \left\{\tau \varepsilon^{-2}, d^{3} \gamma^{-3}\right\}\right)$ arith. operations.

Proposition If the convex setC is defined as a set of m quadratic constraints ($m>1$), and the objective function Hessian satisfies $\max _{x \in \mathcal{C}} \mathcal{X}^{\top} \nabla^{2} f(x) x \leq \mathcal{O}(\gamma)$, then the algorithm finds an (ε, γ). SOSP at most after $\mathcal{O}\left(\max \left\{\tau \varepsilon^{-2}, d^{3} m^{7} \gamma^{-3}\right\}\right)$ arithmetic operations.

Proposed Algorithm

- for $t=1,2$

```
if \nablaf((\mp@subsup{x}{t}{})T
    if \nablaf(\mp@subsup{x}{t}{}\mp@subsup{)}{}{\top}(\mp@subsup{v}{t}{}-\mp@subsup{x}{t}{})<-\varepsilon
        \mp@subsup{x}{t+1}{\prime}=(1-\eta)\mp@subsup{x}{t}{}+\etav
        else
            Find}\mp@subsup{u}{t}{}:\mathrm{ a }\rho\mathrm{ -approximate solution of the QP
            if q(\mp@subsup{u}{t}{})<-\rho\gamma
            xt+1}=(1-\sigma)\mp@subsup{x}{t}{}+\sigma\mp@subsup{u}{t}{
            else return x}\mathrm{ , and stop
```


Stochastic Setting

- What about the stochastic setting?

$$
\min _{x \in \mathcal{P}} f(x)=\min _{x x \mathcal{P}_{\theta}} \mathbb{E}_{\theta}[F(x, \Theta)]
$$

- where Θ is a random variable with probability distribution \mathcal{P}

Replace $\nabla f\left(x_{t}\right)$ and $\nabla^{2} f\left(x_{t}\right)$ by their stochastic approximations g_{t} and H^{\prime}

$$
g_{t}=\frac{1}{b_{g}} \sum_{i=1}^{b_{g}} \nabla F\left(x_{t}, \theta_{i}\right), \quad H_{t}=\frac{1}{b_{H}} \sum_{i=1}^{b_{H}} \nabla^{2} F\left(x_{t}, \theta_{i}\right)
$$

- Change some conditions to afford approximation error $\Rightarrow \nabla f\left(x_{t}\right)^{\top}\left(x-x_{t}\right)=0 \Rightarrow \nabla g_{t}^{\top}\left(x-x_{t}\right) \leq r$

Proposed Method for the Stochastic Setting

```
for }t=1
Compute v
    if g}\mp@subsup{g}{t}{T}(\mp@subsup{v}{t}{}-\mp@subsup{x}{t}{\prime})\leq-\frac{\varepsilon}{2
- else
- else}\quad\mathrm{ Find }\mp@subsup{u}{t}{\prime}:\mathrm{ a }\rho\mathrm{ -approximate solution of
            min q(u):=(u-\mp@subsup{x}{t}{}\mp@subsup{)}{}{\top}\mp@subsup{H}{t}{\prime}(u-\mp@subsup{x}{t}{})
            s.t. u\in\mathcal{C},\mp@subsup{g}{t}{\top}(u-\mp@subsup{x}{t}{})\leqr
                q(ut)<-\frac{\rho}{2}}\mp@subsup{x}{t+1}{=(1-\sigma)\mp@subsup{x}{t}{}+\sigmau
            return }\mp@subsup{x}{t}{}\mathrm{ and stop
```

Theoretical Results for the Stochastic Setting

Theorem. If we set stepsizes to $\eta=\mathcal{O}(\varepsilon)$ and $\sigma=\mathcal{O}(\rho \gamma)$ batch sizes to $b_{g}=\mathcal{O}\left(\max \left\{\rho^{-4} \gamma^{-4}, \varepsilon^{-2}\right\}\right)$ and $b_{H}=\mathcal{O}\left(\rho^{-2} \gamma\right.$
$\stackrel{\text { and che cose }}{\Rightarrow}$ The outcome of Algorithm 2 is an (ε, γ)-SOSP w.h.p. \Rightarrow Total No. of iterations is at most $\mathcal{O}\left(\max \left\{\varepsilon^{-2}, \rho^{-3} \gamma^{-3}\right\}\right)$ w.h.p.

Corollary Algorithm finds an ($\varepsilon, \gamma)$-SOSP w.h.p. after computing
$\Rightarrow \mathcal{O}\left(\max \left\{\varepsilon^{-2} \rho^{-4} \gamma^{-4}, \varepsilon^{-4}, \rho^{-7} \gamma^{-7}\right\}\right)$ stochastic gradients
$\Rightarrow \mathcal{O}\left(\max \left\{\varepsilon^{-2} \rho^{-3} \gamma^{-3}, \rho^{-5} \gamma^{-5}\right\}\right)$ stochastic Hessians

Conclusion

- Method for finding an SOSP in constrained settings \Rightarrow Using first-order information to reach an FOSP \Rightarrow Solve a QP up to a constant factor $\rho<1$ to escape from saddles
- First finite-time complexity analysis for constrained problems $\Rightarrow \mathcal{O}\left(\max \left\{\varepsilon^{-2}, \rho^{-3} \gamma^{-3}\right\}\right)$ iter. $\Rightarrow \mathcal{O}\left(\max \left\{\tau \varepsilon^{-2}, d^{3} m^{7} \gamma^{-3}\right\}\right)$ A.O for QC
\Rightarrow Extended our results to the stochastic setting

