

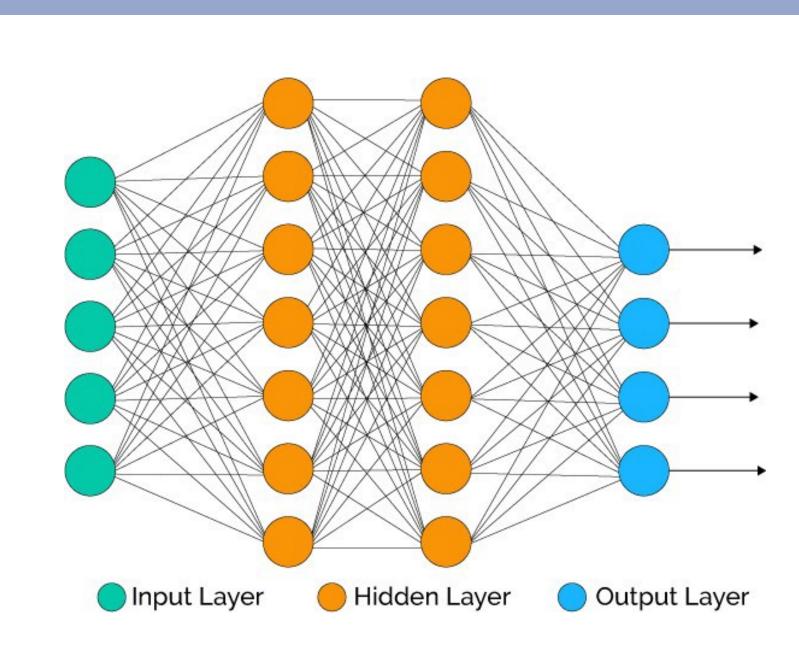
Massachusetts Institute of Technology

Escaping Saddle Points in Constrained Optimization

Aryan Mokhtari, Asuman Ozdaglar, and Ali Jadbabaie

Laboratory for Information and Decision Systems (LIDS), Massachusetts Institute of Technology (MIT)

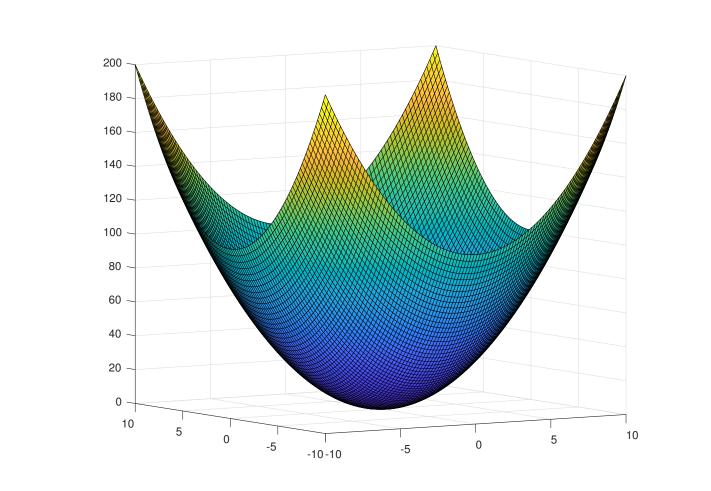
Introduction



- ▶ Recent revival of interest in nonconvex optimization
 ⇒ Practical success and advances in computational tools
- Consider the following general optimization program $\min_{x \in \mathcal{C}} f(x)$
- $ightharpoonup \mathcal{C} \subseteq \mathbb{R}^d$ is a convex compact closed set \Rightarrow This problem is hard

Convex Optimization: Optimality Condition

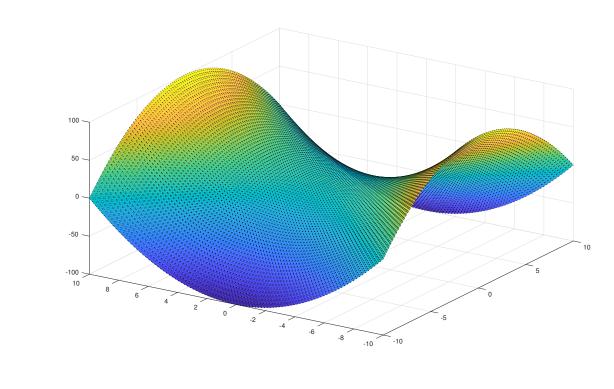
- Before jumping to nonconvex optimization
 - ⇒ Let's recap the convex case!

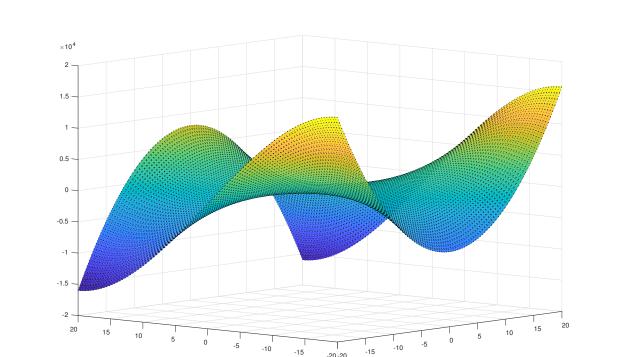


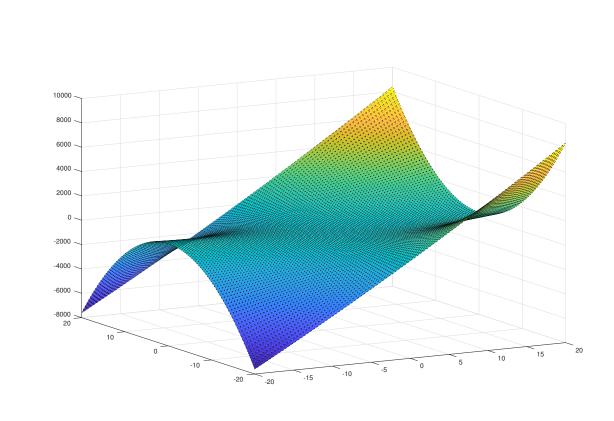
- In the convex setting (*f* is convex)
 - ⇒ First-order optimality condition implies global optimality
 - ⇒ Finding an approximate first-order stationary point is suff.

 $\begin{cases} \text{Unconstrained: Find } x^* \text{ s.t. } \|\nabla f(x^*)\| \leq \varepsilon \\ \text{Constrained: Find } x^* \text{ s.t. } \nabla f(x^*)^T (x - x^*) \geq -\varepsilon \quad \text{for all } x \in \mathcal{C} \end{cases}$

Nonconvex Optimization







- ightharpoonup 1st-order optimality is not enough \Rightarrow Saddle points exist!
- Check higher order derivatives ⇒ To escape from saddle points
 ⇒ Search for a second-order stationary point (SOSP)
- ► Does convergence to an SOSP lead to global optimality? No!
- ▶ But, if all saddles are escapable (strict saddles)
 ⇒ SOSP ⇒ local minimum!
- In several cases, all saddle points are escapable and all local minima are global
 - ⇒ Eigenvector problem [Absil et al., '10]
 - ⇒ Phase retrieval [Sun et al., '16]
 - ⇒ Dictionary learning [Sun et al., '17]

Unconstrained Optimization

- ightharpoonup Consider the unconstrained nonconvex setting ($\mathcal{C}=\mathbb{R}^d$)
- \triangleright x^* is an approximate (ε, γ) -second-order stationary point if

$$\|\nabla f(x^*)\| \leq \varepsilon \qquad \text{and} \qquad \qquad \nabla^2 f(x^*) \succeq -\gamma \|$$
 first-order optimality condition second-order optimality condition

- Various attempts to design algorithms converging to an SOSP
- ▶ Perturbing iterates by injecting noise
 ⇒ [Ge et al., '15], [Jin et al., '17a,b], [Daneshmand et al., '18]
- Using the eigenvector of the smallest eigenvalue of the Hessian
 ⇒ [Carmon et al., '16], [Allen-Zhu, '17], [Xu & Yang, '17], [Royer & Wright, '17], [Agarwal et al., '17], [Reddi et al., '18]
- ▶ Overall cost to find an (ε, γ) -SOSP \Rightarrow Polynomial in ε^{-1} and γ^{-1}
- ► However, not applicable to the convex constrained setting!
- In the constrained case, can we find an SOSP in poly-time?

Constrained optimization: Second-order stationary point

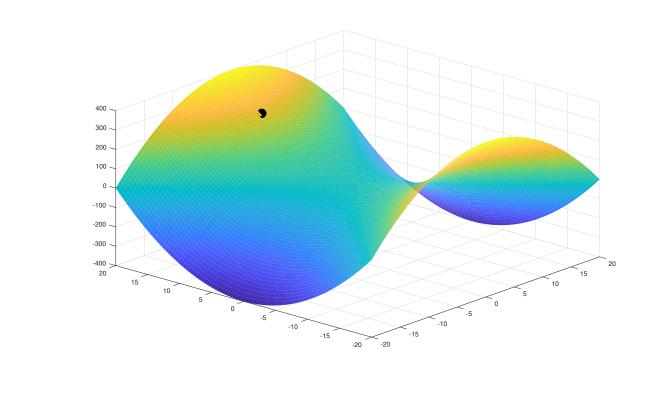
- ► How should we define an SOSP for the constrained setting?
- $x^* \in \mathcal{C}$ is an approximate (ε, γ) -second-order order stationary point if

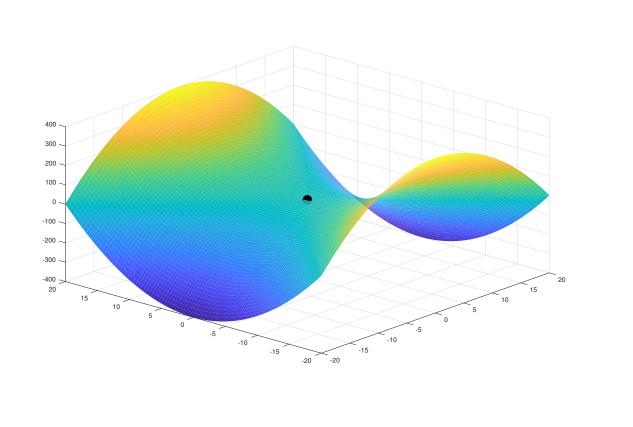
$$\nabla f(x^*)^T(x-x^*) \ge -\varepsilon$$
 for all $x \in C$

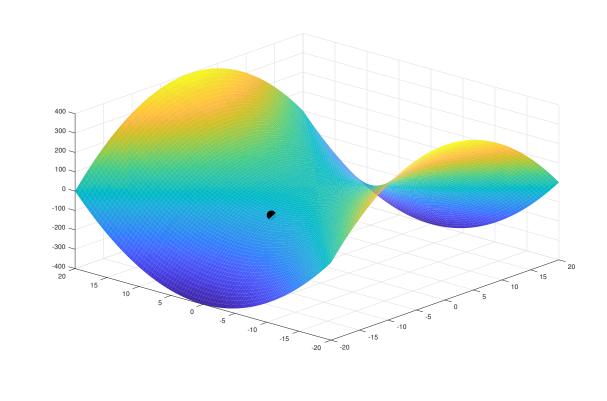
$$(x-x^*)^T \nabla^2 f(x^*)(x-x^*) \ge -\gamma$$
 for all $x \in \mathcal{C}$ s. t. $\nabla f(x^*)^T (x-x^*) = 0$

- Second condition should be satisfied only on the subspace that function can be increasing
- Setting $\varepsilon = \gamma = 0$ gives the necessary conditions for a local min
- ▶ We propose a framework that finds an (ε, γ) -SOSP in poly-time ⇒ If optimizing a quadratic loss over \mathcal{C} up to a constant factor is tractable

Proposed algorithm to find an (ε, γ) -SOSP







- Follow a first-order update to reach an ε -FOSP
 - \Rightarrow The function value decreases at a rate of $\mathcal{O}(\epsilon^{-2})$
- ► Escape from saddle points by solving a QP which depends objective function curvature information
 - \Rightarrow The function value decreases at a rate of $\mathcal{O}(\gamma^{-3})$
- Once we escape from a saddle point we won't revisit it again
 - ⇒ The function value decreases after escaping from saddle
 - → It is guaranteed that the function value never increases

Stage I: First-order update (Finding a critical point)

- ► Goal: Find x_t s.t. $\Rightarrow \nabla f(x_t)^T(x x_t) \geq -\varepsilon$ for all $x \in C$
- Follow Frank-Wolfe until reaching an ε -FOSP

$$X_{t+1} = (1 - \eta)X_t + \eta V_t,$$
 where $V_t = \operatorname{argmin}\{\nabla f(X_t)^T V\}$

Follow Projected Gradient Descent until reaching an ε -FOSP

$$\mathbf{X}_{t+1} = \pi_{\mathcal{C}}\{\mathbf{X}_t - \eta \nabla f(\mathbf{X}_t)\},$$

- $\pi_{\mathcal{C}}(.)$ is the Euclidean projection onto the convex set \mathcal{C}
- ► The function value decreases at least by a factor of $\mathcal{O}(\epsilon^{-2})$

Stage II: Second-order update (Escaping from saddle points)

Find u_t a ρ -approximate solution of the quadratic program

Minimize
$$q(u) := (u - x_t)^T \nabla^2 f(x_t)(u - x_t)$$

subject to $u \in \mathcal{C}$, $\nabla f(x_t)^T (u - x_t) = 0$

► $q(u^*) \le q(u_t) \le \rho q(u^*)$ for some $\rho \in (0, 1]$

If
$$q(u_t) < -\rho \gamma \Rightarrow \text{Update } x_{t+1} = (1 - \sigma)x_t + \sigma u_t$$

If $q(u_t) \ge -\rho \gamma \Rightarrow q(u^*) \ge -\gamma \Rightarrow x_t \text{ is an } (\varepsilon, \gamma)\text{-SOSP}$

Some classes of convex constraints satisfy this property
 ⇒ Quadratic constraints under some conditions

Theoretical Results

Theorem. If we set the stepsizes to $\eta = \mathcal{O}(\varepsilon)$ and $\sigma = \mathcal{O}(\rho\gamma)$, the proposed algorithm finds an (ε, γ) -SOSP after at most $\mathcal{O}(\max\{\varepsilon^{-2}, \rho^{-3}\gamma^{-3}\})$ iterations.

When can we solve the quadratic subproblem approximately?

Proposition If C is defined by a quadratic constraint, then the alg. finds an (ε, γ) -SOSP after $O(\max\{\tau \varepsilon^{-2}, d^3 \gamma^{-3}\})$ arith. operations.

Proposition If the convex set C is defined as a set of m quadratic constraints (m > 1), and the objective function Hessian satisfies $\max_{x \in C} x^T \nabla^2 f(x) x \leq \mathcal{O}(\gamma)$, then the algorithm finds an (ε, γ) -SOSP at most after $\mathcal{O}(\max\{\tau \varepsilon^{-2}, d^3 m^7 \gamma^{-3}\})$ arithmetic operations.

Proposed Algorithm

```
► for t = 1, 2, ...

Compute v_t = \operatorname{argmin}_{v \in \mathcal{C}} \{ \nabla f(x_t)^T v \}

if \nabla f(x_t)^T (v_t - x_t) < -\varepsilon

x_{t+1} = (1 - \eta) x_t + \eta v_t

else

Find u_t: a \rho-approximate solution of the QP

if q(u_t) < -\rho \gamma

x_{t+1} = (1 - \sigma) x_t + \sigma u_t

else

return x_t and stop
```

Stochastic Setting

What about the stochastic setting?

$$\min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}) = \min_{\mathbf{x} \in \mathcal{C}} \mathbb{E}_{\Theta}[F(\mathbf{x}, \Theta)]$$

- ightharpoonup where Θ is a random variable with probability distribution $\mathcal P$
- ► Replace $\nabla f(x_t)$ and $\nabla^2 f(x_t)$ by their stochastic approximations g_t and H_t

$$g_t = \frac{1}{b_g} \sum_{i=1}^{b_g} \nabla F(x_t, \theta_i), \qquad H_t = \frac{1}{b_H} \sum_{i=1}^{b_H} \nabla^2 F(x_t, \theta_i)$$

► Change some conditions to afford approximation error $\Rightarrow \nabla f(x_t)^T(x - x_t) = 0 \Rightarrow \nabla g_t^T(x - x_t) \leq r$

Proposed Method for the Stochastic Setting

```
▶ for t = 1, 2, ...

Compute v_t = \operatorname{argmin}_{v \in \mathcal{C}} \{g_t^T v\}

if g_t^T (v_t - x_t) \le -\frac{\varepsilon}{2}

x_{t+1} = (1 - \eta)x_t + \eta v_t

else

Find u_t: a \rho-approximate solution of \min \ q(u) := (u - x_t)^T H_t(u - x_t)

s. t. u \in \mathcal{C}, \ g_t^T (u - x_t) \le r

if q(u_t) < -\frac{\rho \gamma}{2}

x_{t+1} = (1 - \sigma)x_t + \sigma u_t

else

return x_t and stop
```

Theoretical Results for the Stochastic Setting

Theorem. If we set stepsizes to $\eta = \mathcal{O}(\varepsilon)$ and $\sigma = \mathcal{O}(\rho\gamma)$, batch sizes to $b_g = \mathcal{O}(\max\{\rho^{-4}\gamma^{-4}, \varepsilon^{-2}\})$ and $b_H = \mathcal{O}(\rho^{-2}\gamma^{-2})$, and choose $r = \mathcal{O}(\rho^2\gamma^2)$,

- \Rightarrow The outcome of Algorithm 2 is an (ε, γ) -SOSP w.h.p.
- \Rightarrow Total No. of iterations is at most $\mathcal{O}(\max\{\varepsilon^{-2}, \rho^{-3}\gamma^{-3}\})$ w.h.p.

Corollary Algorithm finds an (ε, γ) -SOSP w.h.p. after computing $\Rightarrow \mathcal{O}(\max\{\varepsilon^{-2}\rho^{-4}\gamma^{-4}, \varepsilon^{-4}, \rho^{-7}\gamma^{-7}\})$ stochastic gradients

 $\Rightarrow \mathcal{O}(\max\{\varepsilon^{-2}\rho^{-3}\gamma^{-3}, \rho^{-5}\gamma^{-5}\})$ stochastic Hessians

Conclusion

- Method for finding an SOSP in constrained settings
 - ⇒ Using first-order information to reach an FOSP
- \Rightarrow Solve a QP up to a constant factor ρ < 1 to escape from saddles
- First finite-time complexity analysis for constrained problems $\Rightarrow \mathcal{O}(\max\{\varepsilon^{-2}, \rho^{-3}\gamma^{-3}\})$ iter. $\Rightarrow \mathcal{O}(\max\{\tau\varepsilon^{-2}, d^3m^7\gamma^{-3}\})$ A.O. for QC
 - ⇒ Extended our results to the stochastic setting