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» Recent revival of interest in nonconvex optimization
= Practical success and advances in computational tools

» Consider the following general optimization program
min f(x)

xeC

» C C RYis a convex compact closed set = This problem is hard

» Before jumping to nonconvex
optimization
= Let’s recap the convex case!

» In the convex setting (f Is convex)

= First-order optimality condition implies global optimality
= Finding an approximate first-order stationary point is suff.

Unconstrained: Find x* s.t.  ||Vi(x¥)|| < ¢
Constrained: Find x* s.t. Vf(x*)'(x — x*) > —¢ forallx €C

» 1st-order optimality is not enough = Saddle points exist!

» Check higher order derivatives = To escape from saddle points
= Search for a second-order stationary point (SOSP)

» Does convergence to an SOSP lead to global optimality? No!

» But, if all saddles are escapable (strict saddles)
= SOSP = local minimum!

» |n several cases, all saddle points are escapable and all local
minima are global

= Elgenvector problem [Absil et al., "10]
= Phase retrieval [Sun et al., '16]
— Dictionary learning [Sun et al., "17]

» Consider the unconstrained nonconvex setting (C = R9)
> X*Is an approximate (e, v)-second-order stationary point if

V(x| < e and Vf(x*) = —Al

first-order optimality condition second-order optimality condition

» Various attempts to design algorithms converging to an SOSP

» Perturbing iterates by injecting noise
— [Ge et al., '15], [Jin et al., "17a,b], [Daneshmand et al., '18]

» Using the eigenvector of the smallest eigenvalue of the Hessian
— [Carmon et al., '16], [Allen-Zhu, '17], [Xu & Yang, '17], [Royer &
Wright, "17], [Agarwal et al., '17], [Reddi et al., "18]

» Overall cost to find an (g, 7)-SOSP = Polynomial in ="' and v~
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However, not applicable to the convex constrained setting!

» In the constrained case, can we find an SOSP in poly-time?

» How should we define an SOSP for the constrained setting?

» x* € Cis an approximate (¢, v)-second-order order stationary
point If

VIix*) ' (x —x*)> —c forallx eC

(x—x*)'V2f(x")(x—x*) > —~ forallxeC s.t. VF(x*) (x—x*)=0
» Second condition should be satisfied only on the subspace that
function can be increasing
» Setting ¢ = v = 0 gives the necessary conditions for a local min

» We propose a framework that finds an (=, v)-SOSP in poly-time

= If optimizing a quadratic loss over C up to a constant
factor is tractable

» Follow a first-order update to reach an s-FOSP
— The function value decreases at a rate of O(¢ )

» Escape from saddle points by solving a QP which depends
objective function curvature information

— The function value decreases at a rate of O(y3)

» Once we escape from a saddle point we won't revisit it again
= The function value decreases after escaping from saddle
= It Is guaranteed that the function value never increases

» Goal: Find x; s.t. = Vf(x)'(x —x;) > —¢ forallx €C

» Follow Frank-Wolfe until reaching an e-FOSP

Xt 1 = (1 —n)Xt + nv;, where v; = argmin{Vf(x;)' v}

vel

» Follow Projected Gradient Descent until reaching an e-FOSP

Xt11 = 7TC{Xt — an(Xt)},

» The function value decreases at least by a factor of O(¢4)

» Find u; a p-approximate solution of the quadratic program

Minimize qg(u) := (U — x;)"V2f(x;)(u — X;)
subjectto ueC, VI(x) (u—x)=0

> q(u”) < q(ur) < pq(u”) for some p € (0, 1]

If q(u;)) < —py = Update X1 = (1 —0)X¢ + ou;
If q(u;) > —py = q(u*) > —y = Xxyisan (g,7)-SOSP

» Some classes of convex constraints satisfy this property
— Quadratic constraints under some conditions

Theorem. If we set the stepsizes to n = O(e) and o =
O(p), the proposed algorithm finds an (e,~)-SOSP after at most
O(max{e 2, p—>~3}) iterations.

» When can we solve the quadratic subproblem approximately?

Proposition /fC is defined by a quadratic constraint, then the alg.
finds an (e, v)-SOSP after O(max{rTc "2, d*y3}) arith. operations.

Proposition /fthe convex setC is defined as a set of m quadratic
constraints (m > 1), and the objective function Hessian satis-
fies maxyce X' V2f(x)x < O(7), then the algorithm finds an (e, v)-
SOSP at most after O(max{rc 2, d°m’~3}) arithmetic operations.

» fort=12,...

- Compute v; = argminveC{Vf(Xt)TV}

> If Vf(Xt) T(Vt — Xt) < —€

> X1 = (1 —n)Xt +nvi

> else

> Find u;: a p-approximate solution of the QP
> if q(ur) < —py

> Xt+1:(1 —O')Xt—|—0'Ut

> else

>

return x; and stop

» What about the stochastic setting?

min f(x) = minEg|F(x, ©)]
xeC xeC

» where © is a random variable with probability distribution P

» Replace V{(x;) and V=f(x;) by their stochastic approximations
g: and H,

1 — 1 5
_b_giz;VF(Xtvei)7 Ht:b_/—/zv F(Xt7 i)

» Change some conditions to afford approximation error
= Vix)' (x —x) =0 = Vg/(x —x;) <r

fort=1.2,...
Compute v; = argmin,-{g:' v}
If gtT(Vt — Xt) < —%
Xti1 = (1 — n)Xt + nvi
else

Find u;. a p-approximate solution of
min q(u) == (u— x)" Hi(u — x)
s.t. ueC, g/ (U—x) <r
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If Q(Ut) < ’0;
Xt11 = (1
else
return x; and stop

—O')Xt—l—O'Ut

VVvyvVYyYy

Theorem. If we set stepsizes ton = O(e) and o = O(py
batch sizes to by = O(max{p~*y~*,e72}) and by = O(p %y~ )
and choose r = O(p?~?),

= The outcome of Algorithm 2 is an (¢,~)-SOSP w.h.p.

= Total No. of iterations is at most O(max{s 2, p—°y3}) w.h.p.

Corollary Algorithm finds an (e,~)-SOSP w.h.p. after computing
= O(max{c2p %y~ % p~ '~ ') stochastic gradients
= O(max{c2p3y73, p=>~}) stochastic Hessians

» Method for finding an SOSP in constrained settings
= Using first-order information to reach an FOSP

— Solve a QP up to a constant factor p < 1 to escape from
saddles

» First finite-time complexity analysis for constrained problems
= O(max{c 2, p 3y °}) iter. = O(max{re2,d°m’y°}) A.O.
for QC
= Extended our results to the stochastic setting
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