Ph.D. Thesis
- A. Mokhtari , “Efficient Methods for Large-Scale Empirical Risk Minimization“, 2017.
Preprints
- S. Paternain, A. Mokhtari, and A. Ribeiro, “A Second Order Method for Nonconvex Optimization“, 2017.
- A. Mokhtari, M. Eisen, and A. Ribeiro, “IQN: An Incremental Quasi-Newton Method with Local Superlinear Convergence Rate“, 2017.
- A. Mokhtari, M. Gürbüzbalaban, and A. Ribeiro, “Surpassing Gradient Descent Provably: A Cyclic Incremental Method with Linear Convergence Rate“, 2016.
- A. Mokhtari, A. Koppel, and A. Ribeiro, “A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning“, 2016.
Journal Papers
- A. Simonetto, A. Koppel, A. Mokhtari, G. Leus, and A. Ribeiro, “Decentralized Prediction-Correction Methods for Networked Time-Varying Convex Optimization“, IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5724-5738, Nov. 2017. [ Arxiv version]
- T. Chen, A. Mokhtari, X. Wang, A. Ribeiro, and G. B. Giannakis, “Stochastic Averaging for Constrained Optimization with Application to Online Resource Allocation“, IEEE Trans. on Signal Process., vol. 65, no. 12, pp. 3078-3098, June 15, 15 2017. [ Arxiv version]
- M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized Quasi-Newton Methods“, IEEE Transactions on Signal Processing, vol. 65, no. 10, pp. 2613-2628, May 15, 15 2017. [ Arxiv version] [Top 50 downloaded articles in IEEE TSP, March 2017. ]
- A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton Distributed Optimization Methods“, IEEE Transactions on Signal Processing, vol. 65, no. 1, pp. 146-161, Jan.1, 1 2017. [Arxiv version ] [Top 50 downloaded articles in IEEE TSP, November 2016. ]
- A. Mokhtari and A. Ribeiro, “DSA: Decentralized Double Stochastic Averaging Gradient Algorithm“, Journal of Machine Learning Research, 17(61):1-35, 2016.
- A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A Decentralized Second-Order Method with Exact Linear Convergence Rate for Consensus Optimization“, IEEE Transactions on Signal and Information Processing over Networks, vol. 2, no. 4, pp. 507-522, Dec. 2016. [ Arxiv Version ]
- A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers“, IEEE Trans. on Signal Process., vol. 64, no. 19, pp. 5158-5173, Oct. 1, 2016. [ Arxiv version ]
- A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A Class of Prediction-Correction Methods for Time-Varying Convex Optimization“, IEEE Transactions on Signal Processing, vol. 64, no. 17, pp. 4576-4591, Sept.1, 2016. [ Arxiv version ]
- A. Mokhtari and A. Ribeiro, “Global Convergence of Online Limited Memory BFGS“, Journal of Machine Learning Research, vol. 16, pp. 3151-3181, 2015.
- A. Mokhtari and A. Ribeiro, “RES: Regularized Stochastic BFGS Algorithm“, IEEE Trans. on Signal Process., vol. 62, no. 23, pp. 6089-6104, December 2014. [ Arxiv version]
Conference Papers
- A. Mokhtari, H. Hassani, and A. Karbasi, “Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap“, Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) 2018, Lanzarote, Canary Islands, April 9-11, 2018.
- M. Eisen, A. Mokhtari, and A. Ribeiro, “Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method“, Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) 2018, Lanzarote, Canary Islands, April 9-11, 2018.
- A. Mokhtari and A. Ribeiro, “First-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization,” Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems (NIPS) 2017, December 4-9, 2017, Long Beach, CA, pp. 2057-2065, 2017.
- M. Eisen, A. Mokhtari, and A. Ribeiro, “A Doubly Quasi-Newton Method for Decentralized Consensus Optimization,” 2017 51th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2017.
- A. Mokhtari, M. Eisen, and A. Ribeiro, “An Incremental Quasi-Newton Method with a Local Superlinear Convergence Rate,” 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 4039-4043. [ Arxiv version ]
- A. Mokhtari, M. Gürbüzbalaban, and A. Ribeiro, “A Double Incremental Aggregated Gradient Method with Linear Convergence Rate for Large-Scale Optimization,” 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 4696-4700. [ Arxiv version ]
- A. Mokhtari, A. Koppel, G. Scutari, and A. Ribeiro, “Large-Scale NonConvex Stochastic Optimization by Doubly Stochastic Successive Convex Approximation,” 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 4701-4705. [ Arxiv version ]
- A. Mokhtari and A. Ingber, “A Diagonal-Augmented Quasi-Newton Method with Application to Factorization Machines,” 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 2671-2675. [ Arxiv version ]
- A. Mokhtari, H. Daneshmand, A. Lucchi, T. Hofmann, and A. Ribeiro, “Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy,” Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems (NIPS) 2016, December 5-10, 2016, Barcelona, Spain, pp. 4062-4070, 2016. [ Supplementary Material ]
- T. Chen, A. Mokhtari, X. Wang, A. Ribeiro, and G. B. Giannakis, “A Data-driven Approach to Stochastic Network Optimization“, 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington DC, DC, USA, 2016, pp. 510-514.
- H. Zhang, W. Shi, A. Mokhtari, A. Ribeiro, and Q. Ling, “Decentralized Constrained Consensus Optimization with Primal-Dual Splitting Projection“, 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington DC, DC, USA, 2016, pp. 565-569.
- M. Eisen, A. Mokhtari, and A. Ribeiro, “An Asynchronous Quasi-Newton Method for Consensus Optimization“, 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington DC, DC, USA, 2016, pp. 570-574.
- A. Mokhtari, W. Shi, and Qing Ling, “ESOM: Exact Second-Order Method for Consensus Optimization“, 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2016, pp. 783-787.
- A. Koppel, A. Mokhtari, and A. Ribeiro, “Doubly Stochastic Algorithms for Large-Scale Optimization“, 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2016, pp. 1705-1709.
- A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro, “Online Optimization in Dynamic Environments: Improved Regret Rates for Strongly Convex Problems“, 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 2016, pp. 7195-7201. [ Arxiv ]
- A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro,”A Decentralized Second-Order Method for Dynamic Optimization“, 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 2016, pp. 6036-6043. [ Arxiv]
- M. Eisen, A. Mokhtari, and A. Ribeiro, “A Decentralized Quasi-Newton Method for Dual Formulations of Consensus Optimization“, 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 2016, pp. 1951-1958.[ Arxiv ]
- A. Simonetto, A. Koppel, A. Mokhtari, G. Leus, and A. Ribeiro, “A Quasi-Newton Prediction-Correction Method for Decentralized Dynamic Convex Optimization”, 2016 European Control Conference (ECC), Aalborg, Denmark, 2016, pp. 1934-1939. [ Arxiv version ]
- A. Mokhtari, A. Koppel, and A. Ribeiro, “Doubly Random Parallel Stochastic Methods for Large Scale Learning“, 2016 American Control Conference (ACC), Boston, MA, USA, 2016, pp. 4847-4852. [ Arxiv version ]
- A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A Decentralized Prediction-Correction Method for Networked Time-Varying Convex Optimization“, in Proc. IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing(CAMSAP), pp. 509-512, Cancun, Dec. 13-16, 2015.
- A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “Decentralized Quadratically Approximated Alternating Direction Method of Multipliers“, in Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 795-799, Orlando, FL, 2015.
- A. Koppel, A. Simonetto, A. Mokhtari, G. Leus, and A. Ribeiro, “Target Tracking with Dynamic Convex Optimization“, in Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1210-1214, Orlando, FL, 2015.
- A. Mokhtari and A. Ribeiro, “Decentralized Double Stochastic Averaging Gradient“, in Proc. Asilomar Conference on signals, systems, and computers, pp. 406-410, Pacific Grove, CA, November 8-11, 2015.
- A. Simonetto, A. Koppel, A. Mokhtari, G. Leus, and A. Ribeiro, “Prediction-Correction Methods for Time-Varying Convex Optimization“, in Proc. Asilomar Conference on signals, systems, and computers, pp. 666-670, Pacific Grove, CA, November 8-11, 2015.
- A. Mokhtari, Q. Ling, and A. Ribeiro, “An Approximate Newton Method for Distributed Optimization“, in Proc Int. Conf. Acoustics Speech Signal Process. (ICASSP), pp. 2959-2963, Brisbane, Australia, 2015.
- A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton” , in Proc. Asilomar Conference on signals, systems, and computers, pp. 1621-1625, Pacific Grove, CA, November 2-5, 2014. [ slides ]
- A. Mokhtari and A. Ribeiro, “A Quasi-Newton Method for Large Scale Support Vector Machines” , in Proc. Int. Conf. Acoustics Speech Signal Process. (ICASSP), pp. 8302-8306, Florence, Italy, May 4-9 2014.
- A. Mokhtari and A. Ribeiro, “Regularized Stochastic BFGS algorithm” , In Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1109-1112, Austin, Texas, December 3-5, 2013.
- A. Mokhtari and A. Ribeiro, “A Dual Stochastic DFP algorithm for Optimal Resource Allocation in Wireless Systems“, In Proc. IEEE Workshop on Signal Process. Advances in Wireless Commun. (SPAWC), pp. 21-25, Darmstadt, Germany, June 16-19, 2013.
Technical Reports
- M. Stern, A. Mokhtari, and A. Ribeiro, “Online Limited-Memory BFGS for Click-Through Rate Prediction“, 2015.
- A. Mokhtari and A. Ribeiro, “A Dual Stochastic DFP algorithm for Optimal Resource Allocation in Wireless Systems“, 2013.